If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7r^2-8r-7=0
a = 7; b = -8; c = -7;
Δ = b2-4ac
Δ = -82-4·7·(-7)
Δ = 260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{260}=\sqrt{4*65}=\sqrt{4}*\sqrt{65}=2\sqrt{65}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{65}}{2*7}=\frac{8-2\sqrt{65}}{14} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{65}}{2*7}=\frac{8+2\sqrt{65}}{14} $
| 10-(3b-2/4)=b+5/2 | | 9x-78/5=6 | | 8z+17=4z19 | | 8(14)-13=x | | (3x+1)/7-(2-4x)/3=(-5x-4)/14+7x/6 | | 2(3x-2)-3=7 | | 4t-6+4=14 | | 8w^2+3w-7=0 | | (8x-13)+(7x-17)=180 | | 4m-3=2(m-3) | | -8c+1=-1 | | 8y^2-2y+7=0 | | 5x+19/9=6 | | 15*x-45=0 | | -3+n/3=1 | | (6-n)/n=11 | | (6-n)=11 | | 8^-2x+9=1974 | | 3u^2-9u+8=0 | | 6+10+6v=9v–5 | | 5g+19+13=-13-4g | | 15*x+45=0 | | 4/9x=-20 | | 8j=9j+7 | | 78=2(2x+6)+2(x) | | 5y^2+y+4=0 | | a*3=25 | | 4x+6/5=6 | | a*0.03=25 | | 7.4y=48 | | 5w^2+5w-5=0 | | -9+k/2=0 |